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FOREWORD

This self-rotation study was suggested by Captain John C. Simons, Crew Stations Section,
Human Engineering Branch, 6570th Aerospace Medical Research Laboratories. This work fulfills
a requirement under Project No. 7184, "Human Performance in Advanced Systems," Task No.
718405, "Design Criteria for Crew Stations in Advanced Systems." Basically, this report is an
expansion by Kulwicki of the original work completed by Schlei and Vergamini (ref. 10), University
of Dayton Research Institute under Contract AF 33(616)-6256. This study was initiated in November
1961 and was completed in February 1962.

Special acknowledgment is made to the following people in this Headquarters:
Mr. Charles Clauser and the Anthropology Section, Behavioral Sciences Laboratory, for

their many helpful suggestions and construction of the model man; and to Mr. Otto Schueller,
Protection Branch, Life Support Systems Laboratory, for his technical critique of the program.
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ABSTRACT

To be an effective weightless worker, an individual must be able to achieve and maintain
a stable attitude with respect to his vehicle. If the worker is to have this capability, he must
be able to control both translation and rotation. Translation may not be controlled without
hardware, whereas rotation may. The purp3se of this study was to investigate the possibility
of body rotation by limb manipulation. This self-rotation is analyzed by the application of
theoretical mechanics to a rigid mathematical model composed of six cylindrical segments. A
quantitative evaluation, based on the mathematical model, is made for one maneuver to determine
the expected degree of rotation. As a result of this analysis, a series of selected maneuvers are
proposed to give man the capability for rotation about three mutually perpendicular axes. The
nine maneuvers are intended to provide an effective rotation, while reducing undesirable coupled
rotations. In addition, the stability of rotation of various geometrical shapes is investigated to
determine if man can expect a self-rotation maneuver to be stable.

PUBLICATION REVIEW

This technical documentary report has been reviewed and is approved.

WALTER F. GRETHER
Technical Director
Behavioral Sciences Laboratory

.. In
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WEIGHTLESS MAN: SELF-ROTATION TECHNIQUES

INTRODUCTION

Numerous zero-G flights have shown that a man, being flexible, can achieve various limb
rotations through body manipulations without the use of external forces. However, the process
is neither efficient, nor is the rotational effect always the reaction desired.

THEORETICAL CONSIDERATIONS

To analyze the motions of a body in a weightless environment, the familiar laws of

mechanics are applied

F = ma

where F = force
m = mass
a = acceleration

and, T = Ia

where T = torque
I = moment of inertia
a = angular acceleration

In the absence of external forces and moments, another useful relationship is the law of
conservation of momentum, which states that the total linear momentum and the total angular
momentum of a body re.nain constant. For example, a man may attempt to jump ashore from
a rowboat. If the boat is not moored, the man may land in the water, since his momentum
toward the shore is balanced by the momentum of the boat away from the shore. Thus, the
total momentum of the boat-man system remains zero (fig. 1).

Another example is that of a figure skater rotating with an initial angular velocity and a
definite angular momentum. If he extends his arms, his moment of inertia is great and his
angular velocity is small. If he draws his arms in, his moment of inertia decreases, but his
angular velocity increases so that the total angular momentum remains constant (fig. 2).
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V

MmVm= MBVB= P

"Mm MASS OF MAN
Ms MB MASS OF BOAT VBVm = VELOCITY OF MAN

VB E VELOCITY OF BOAT

Figure 1. Effects of Linear Momentum

Z- AXIS Z-AXIS

I.'= 1 2w2 =H

WHERE w ANGULAR VELOCITY
W'2> -I

I"= MOMENT OF INERTIA

12 < I

Figure 2. Effects of Angular Momentum
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The next step in a mechanics problem is the judicious selection of the free-body, or system.
In analyzing a weightless man, the entire man could be considered the system or various parts of
the man could be selected as the free-body, depending upon which part of the total solution is being
considered. To be more specific, consider the weightless man at rest and free of all external
forces and moments. If his entire body is chosen as the system, its center of mass can experience
no net rotation since there are no external torques. The linear and angular moments of the system
are zero.

The body is flexible, however, and is capable of generating internal forces and moments,
such as rotation of one or more limbs, thus imparting angular momentum. However, the rest
of the body would rotate in the opposite sense and the resultant angular momentum would remain
zero. When the rotation of the limbs stops, the rotation of the remaining parts of the body also
stops, and the body attitude will have changed relative to other fixed objects (see fig. 3), however,
that is the only change that could occur. His center of mass would have experienced no absolute
motion in space throughout his maneuvering, but the man would have sensed motion due to the
relative change of attitude with respect to some visual or vestibular reference.

INITIAL
POSITION

FINAL Figure 3. Attitude Change
.- POSITION

S CENTER OF MASS

REFERENCE

The same conclusions can be reached if only a segment of the man's body, such as an arm,
is assumed to be the system. The forces and moments applied to the arms at the shoulder joint
would be considered external loads. Application of the classical laws of mechanics would give
the resultant motion of the arms and applying equal and opposite external loads to the remainder
of the body (equal actions and reactions) give the resultant motion of that system. Thus, the
problem can be analyzed by a number of different applications of the same method. The procedure
can become complex if the body is considered as a large number of separate systems.

The action-reaction effects can be considered as the astronaut attempts to twist his upper
body about the Z-axis (axis through head and feet). To accomplish this motion he must supply an
internal torque at his waist. Considering a torque causing a clockwise rotation as being positive,
an angle measured in a clockwise direction can also be considered positive. The application of
a positive torque to the upper body must be accompanied by the application of an equal negative
torque to the lower body. (The sum of these torques must be zero or rotation will occur.)

It can be shown that
ou I1

el u

where e = angular displacement
I = moment of inertia
u = upper body
1 = lower body(see Appendix I, equation 1)3
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Thus, if the astronaut attempted to twist his upper body through some angle eu , his lower
body would be twisted in an opposite sense by an amount directly porportional to the ratio
of the moment of inertia of the upper body to the moment of inertia of the lower body. If he
untwisted in the same manner, he would return to his original position. If, however, he were to
change the moment of inertia of either the upper portion or the lower portion or both of them, rela-
tively, one to the other, while still in the twisted state, or while untwisting, for example, by
lifting his arms sideways, he would achieve a new attitude. This may be illustrated with an
example from the sport of diving (fig. 4). If a diver intends to perform a swan dive, he falls in
such a position that his limbs are extended to give him the greatest moment of inertia and the
least angular velocity. The diver who wishes to perform a somersault, leaps with his limbs
extended, but then rapidly draws them in and lifts his knees to his chest in the tuck position. This
gives him a smaller moment of inertia and a greater rate of rotation. The same principle is used
by the ballet dancer or figure skater who intends to perform a pirouette. He will first start to
rotate with arms extended, but will gradually draw them as close as possible to the axis of rotation,
thus increasing the angular velocity by decreasing the moment of inertia. If the moment of inertia
will affect the angular velocity, it will also affect the angular displacement. A mathematical
discussion of these results is presented in appendix I from which an expression for the net angle
of rotation is developed (equation 6).

•_ !iY-AXIS

HIGH MOMENT OF INERTIA
LOW ANGULAR VELOCITY

Y-AXIS

LOW MOMENT OF INERTIA

HIGH ANGULAR VELOCITY

12 "I

Figure 4. Effects of Moment of Inertia on Rotation Rates

The reason for the change of moment of inertia for various positions exists within the parallel
axis transfer theorem. This theorem states that the moment of inertia about any axis is equal to
the sum of the moment of inertia about the centroidal axis plus the product of the mass of the body
times the square of the perpendicular distance between axes.

4
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t-Ic + MD
where It = total moment of inertia

Ic = centroidal moment of inertia

m = mass of body
D = perpendicular distance between the axes

The fact that the distance is squared is the greatest influence on the total moment of inertia. This
may be illustrated further by the definition of moment of inertia.

If a body could be divided so that the masses are arbitrarily small, the sum of the masses
would equal the total mass of the body. These masses are called differential masses. If we
multiply each differential mass times the square of its respective radius from the axis of rotation,
and add up all these products, the result represents the moment of inertia of the body about its
centroidal axis of rotation. In equation form

Ic = fradm

where dm = differential mass
r = radius to the differential mass

Since both the definition of the moment of inertia and the parallel axis transfer theorem contain a
term of the radius squared, we may say that moment of inertia reflects the importance of the
distribution of mass. Since the moment of inertia changes with the square of the distance, the
minimum moment of inertia is found where the components of a body are located as near the
centroidal axis as possible, while the maximum moment of inertia is found where the components of
a body are located as far from the centroidal axis as possible.

This technique for changing the moments of inertia of the various portions of the body to
effect a change of attitude can be applied quantitatively and qualitatively to numerous and varied
situations. Qualitative descriptions of some basic body maneuvers are given in the next section.

SELECTED BODY MANEUVERS

In this section, various possible rotations Z-AXIS

about the X-, Y-, and Z-axes of the body (fig.
5) are explained and comments made concern- C OAC - SAGITTAL PLANE

ing the applicability, advantages, and disad- C 0 B C - CORONAL PLANE

vantages of the motion during weightlessness. B 0 A B - TRANSVERSE PLANE

C Y-AXIS

Figure 5. Axis Definition

X-AXIS

5
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MANEUVERS ABOUT THE Z-AXIS

Z. 1, Cat Reflex* (see fig. 6)

With the body straight and arms down, spread the legs to the sides, then twist the entire
torso at the waist about the Z-axis to the right or the left. Holding this twist, extend the arms
straight out to the sides, draw the legs together and then untwist by rotating the torso back to its
original position. When the arms are lowered to the sides, the subject should have the exact
configuration of the limbs with respect to the torso that he began with, but the body as a whole
will have rotated a finite amount.

In general, this maneuver may be considered to consist of a four-part cycle. The components
of this cycle are given as follows:

1. In the initial stage, the subject has his body straight, arms down, and legs spread to
the side in the coronal plane.

2. The subject twists his torso about the Z-axis, the axis of intended rotation. This twist
is generated by an internal torque at the waist.

3. The subject increases the moment of inertia of the top of his body by spreading his arms
and decreases the moment of inertia of the lower part of his body by drawing in his legs. This
change in moment of inertia when coupled to the untwisting causes the lower part of the body to
rotate more than the upper part. This change is responsible for the angular displacement.

4. The subject untwists until he faces to the front again, then lowers his arms and returns
to the initial stage. When he has achieved the initial stage, the subject is in position to repeat
the cycle, and in this way, a rotation about the Z-axis of any amount can be accomplished in steps.

This rotation should be quite symmetrical and free from coupling rotations about other axes.
However, if massive items were strapped to the astronaut's back, motions other than the desired
rotation might be enhanced.

Z. 2, Bend and Twist (see fig. 7)

This maneuver, unlike the cat reflex (Z. 1), involves only the movement of the upper part of
the body. The subject should try to keep his legs fixed parallel to the Z-axis throughout the
maneuver; this position of the legs will tend to minimize induced rotations other than about the
desired axis. The maneuver is an approximation to a continuous rotary motion in that some
modification is necessary due to the fact that the arms cannot make a full revolution about the
Z-axis in the transverse plane. The motion is further modified to reduce a possible coupled
rotation about the X-axis. With these ideas in mind, the bend and twist maneuver can be per-
formed in six stages as follows:

1. In the initial stage, the body is straight and the arms are down as in a position of
attention.

2. The upper part of the body is bent to the side in the coronal plane.

3. The arms are extended overhead to increase the moment of inertia about the Z-axis
of the upper body.

*Capt Simons assigned the descriptive names to these maneuvers so they can be referred to and
understood quickly by space personnel. Training in these maneuvers may be a vital portion of
an astronaut's program.

6
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Figure 6. Positions of "Cat Reflex"' Maneuver (Z. 1)

7
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Figure 7. Positions of "Bend and Twist" Maneuver (Z. 2)

8
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4. The entire upper part of the body is then rotated in the transverse plane to the other
side. That is, the arms move from the side to the front to the other side, and the back remains
nearly horizontal.

5. The arms are drawn in to a down position parallel to the torso. This reduces the
moment of inertia, and hence reduces any induced rotation about the X-axis.

6. The torso is returned to the initial stage.

Because of the large moment of inertia of the upper part when it is bent to one side with the
arms extended, considerable rotation of the lower part of the body is expected. However, the first
step of bending in the coronal plane will cause a rotation about the X-axis, which will be partly
compensated for by the unbending at the end of the exercise. The total result is made even more
difficult to visualize by the asymmetry of the motion. Additional study of this maneuver is needed
before a proper evaluation can be made.

Z. 3, Lasso (see fig. 8)

This maneuver is classified as continuous rotary motion since the only movement involved
is a continual rotation of the arms. With the body straight and both arms overhead, rotate them
continuously in conical motions while keeping the symmetry axes of the cones as near as possible
to the Z-axis of the body. Although the moment of inertia of the arms is small compared with
that of the rest of the body, this is an easy rotation to perform and, with persistance, an absolute
rotation of the entire body can be achieved. This maneuver may be performed with either one or
both arms. If only one arm is used, the rotation may be easier to perform, since the axis of the
arm's rotation will tend to coincide with the Z-axis; however, the total displacement resulting
from each arm rotation will only be half as great.

The greatest disadvantage of this maneuver appears to be the asymmetry of the motion,
since the connection of the arm to the body is removed somewhat from the Z-axis. An evaluation
of the seriousness of coupling rotations due to this asymmetry will be required.

Z.4, Pinwheel (see fig. 9)

This maneuver is another involving continuous rotary motion, but this time an internal
torque at the waist must be continually generated as long as rotation is desired. With the body
straight and with the hands on the hips, the upper part of the body is rotated continuously in a
conical motion. Actually the motions of both upper and lower parts will describe cones with a
common apex at the waist. This maneuver should be more efficient that that described under
Z. 3, Lasso, in producing rotation, but it is also more difficult to perform. To be symmetrical,
the axes of the cones must lie along a straight line. Therefore, the asymmetry of this maneuver
may also be a problem, because the astronaut would have to bend as far backwards as he does to
the side or to the front.

9
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Figure 8. Positions of "YLasso"? Maneuver (Z. 3)

10
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:i

Figure 9. Positions of "Pinwheel" Maneuver (Z. 4)
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Figure 10. Positions of "Signal Flag" Maneuver (X. 1)

MANEUVERS ABOUT THE X-AXIS

X. 1, Signal Flag (see fig. 10)

This maneuver, like Z. 2, Bend and Twist, is an approximation to continuous rotary motion
and is modified due to limb restrictions. Again, the maneuver may be described in six stages
as follows:

1. With the body straight and the arms at the sides, draw in the legs in tuck position.

2. Next, raise one arm overhead.

3. Rotate the raised arm outward to the side in the coronal plane and down to its original
position.

4. At the same time rotate the other arm outward to the side in the coronal plane until
it is overhead.

12
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5. Return the arms to their respective positions of step 2 by bending the elbows and
moving the hands along the torso while keeping the hands and arms as close to the body as
possible. This cycle of arm rotation can be repeated as often as desired so that any amount
of rotation may be accomplished.

6. When the desired rotation is reached, extend the legs and return to the initial position.

Although this maneuver requires many arm rotations per body rotation, the motions involved
are well within limb extension capabilities. Therefore, the execution of this maneuver should be
easily performed.

X. 2, Reach and Turn (see fig. 11)

This maneuver is similar to Z. 2, Bend and Twist, in that it involves mainly movements of
the upper part of the body. Again the legs remain fixed, however, this time they should stay in
tuck position, in order that the moment of inertia of the portion above the waist be much greater
than the portion below the waist.

The order of steps in the execution of the reach and turn maneuver should proceed as
follows:

1. In the initial stage, the body is straight and the arms are down as in a position of

attention.

2. The upper part of the body is bent to the side in the coronal plane.

3. The arms are extended overhead to increase the moment of inertia about the X-axis of
the upper part of the body.

4. The legs are drawn up in tuck position.

5. The entire upper part of the body is then rotated in the coronal plane to the other side.
That is, the arms move from the side to a position directly overhead, to the other side; and the
back remains nearly vertical.

6. To return to the initial stage, pull the arms down alongside the torso and extend the
legs before bending back to the position of attention.

It is extremely important in this maneuver that the sequence of movements as stated above
is maintained. Particularly, the legs must be tucked after the initial bend to the side, and
extended before the final bend to the initial position. Secondarily, the arms must be extended
after the initial bend to the side, and drawn in before the final bend to the initial position. These
two statements indicate that the initial bend to one side must be accompanied by a high inertia
of the lower body and a low inertia of the upper body. Similarly, the bend to the other side must
be accompanied by a low inertia of the lower body and high inertia of the upper body. It is this
change of inertia between bendings that causes a net rotation.

Because of the large moment of inertia of the upper part with the arms extended, consid-
erable rotation of the lower part of the body about the X-axis is expected.

In addition, this maneuver should be quite symmetrical and free from undesirable induced
rotations.

13
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Figure 11. Positions of "Reach and Turn" Maneuver (X. 2)

14
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X. 3, Bend and Twist (see fig. 7)

This maneuver as described in Z. 2 could possibly cause a rotation about the X-axis. With a
few adjustments in procedure, this rotation could be increased somewhat, and a combination of
rotations about X and Z could result. The procedure should be as follows:

1. Initially, the body is straight and the arms are alongside the torso.

2. The arms are raised so that they are parallel to the Z-axis. Simultaneously, the legs
are tucked.

3. The upper part of the body is bent to the side in the coronal plane.

4. The legs are extended and the arms remain extended.

5. The entire upper part of the body is then rotated in the transverse plane to the other side.
That is, the arms move from the side to the front to the other side, and the back remains nearly
horizontal.

6. The legs are again drawn up in tuck position and the arms remain extended.

7. The entire upper part of the body is then rotated in the coronal plane back to the position
of step 3 and the cycle may then be repeated.

Once again, the steps must be performed in the above order if any appreciable X-axis rotation
is to accompany the Z-axis rotation. Additional study of this maneuver is necessary to determine
if it is a desirable way to achieve a combination of rotations.

Figure 12. Positions of "Double Pinwheel" Maneuver (Y. 1)

15
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MANEUVERS ABOUT THE Y-AXIS

Y. 1, Double Pinwheel (see fig. 12)

This continuous rotary maneuver has been demonstrated*with success in zero-G flights. The
procedure is quite simple. With the legs and feet tucked and the arms extended straight out
parallel to the Y-axis, rotate the arms simultaneously in conical motions. Although much arm
motion is needed to produce body rotation, the technique is easily performed and quite symmetrical.

Y. 2, Touch the Toes (see figs. 13a, 13b)

This maneuver is another containing a four-part cycle. The execution of this maneuver may
prove to be difficult due to the asymmetry of the limb manipllations themselves and to a high rate
of energy consumption, because some of the limbs and the torso are stressed to the limits of their
joint ranges. The sequence of movements may be performed as follows:

1. In the initial state, the body is straight, the arms remain along the torso, and the legs
are tucked.

2. The movement about the intended axis of rotation involves first the straightening of the
legs to a "locked position" and then a forward bend at the waist of the torso, as in the "touch-
the-toes" exercise. Note that initially the arms remain along the torso and after the bending of
the torso, the arms should be extended and lie parallel to the legs.

3. The change of inertia and counter-rotation involves first the return of the legs to tuck
position and then a backward bend at the waist of the torso until an upright position is reached as in
the initial state. Note that the arms are overhead throughout this return to the initial state. When
the backward bend is completed, the arms may be lowered; thus the subject is in position for
another cycle. Note that maximum rotation will result if all limb and torso manipulations are
performed in a sagittal plane.

16
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Yet, six more stable axes may be found along lines drawn from the midpoint of the intersection
of any two opposite faces to the midpoint of the intersection of the perpendicular opposite two faces.
When the axes are set up in this manner, a duplication of the first three stable axes occurs. The
moment of inertia of these six axes may be determined by applying the inclined axis transfer
theorem (appendix I, equation 9; see also ref. 3), and may be shown to be equal to miS 2

Ix'x' - 6
for this set of rotated axes. Other axes may be found having the same moment of inertia. A logical
choice would be axes passing diagonally through two opposite corners. There is some stability
about these axes, but it is to a lesser degree. Although a cube is symmetrical about these axes, it
is not symmetrical about every axis passing through the center of mass (figures 15 and 16).

z Z X'

Figure 15. Rotated Axis Position No. 1
-s,-s,-s \Cubic

22 2

Figure 16. Rotated Axis Position No. 2 --- I 4°Cubic x

21
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As the geometrical shape of the model approaches that of a sphere, the number of stable axes
approaches infinity. This is true since the minimum moment of inertia of a sphere is equal to the
maximum moment of inertia, and they both occur about each axis of the sphere, and each axis is an
axis of symmetry.

Of primary importance in this discussion is man himself. The moment of inertia about the
Z-axis (figure 5) of man is the minimum. Thus, man can expect rotation about the Z-axis to be
stable. The maximum moment of inertia for man occurs about the X-axis, and therefore some
stability may be achieved from rotation about X. For man, however, the moment of inertia about
the Y-axis is very nearly equal to the moment of inertia about the X-axis (ref. 2). Thus, the
stability characteristics about these two axes will be similar. Since they are so close in magnitude,
the potential for stability about the X-axis will decrease somewhat and therefore stability about the
Z-axis will be more pronounced. Hence man is seen to be most stable about the axis from head to
foot through the center of mass. Since man is most stable about this axis, It can be said that if he
was forced into a tumble and could maneuver himself close to the Z-axis, he could apply one of
the Z-axis maneuvers which would resolve the rotation to one totally about Z. However, recovering
from this rotation would be difficult.

QUANTITATIVE EVALUATION

In this section, a theoretical evaluation is made of the effectiveness of body-limb manipulation
in producing rotation while weightless. A simple model was drafted to simulate the mass and
moments of inertia of principal parts of the body, and then by calculation, to show the amount of
rotation that can be achieved through purposeful limb manipulation.

Since the maneuvers discussed previously were not complex, the model was as simple as
possible within the limits of realism. Cylinders were chosen as the shape of the segments, since
their properties are well known. Six right circular cylinders were positioned to represent two
arms, two legs, torso, and head, and they were so connected to allow all normal body movements.

Information concerning sizes and weights was given by the Anthropology Section of the 6570th
Aerospace Medical Research Laboratories and taken from Dempster (ref. 2). The model man was
constructed from 50th percentile data based on the 1950 survey of USAF personnel (ref. 6, also
appendix I). Basic dimensions are shown in table I. From this data, the volume of each cylinder can
be calculated and from the volume of each cylinder, its diameter can be calculated. The formula
used is as follows:

d (see appendix I, equation 11)L

Individual measurements and a sketch of the model are shown in figure 17A and 17B. If the indi-
vidual weights of the body segments are added together, the sum will not equal the total body weight,
because the percent of total body weight is a mean for each segment in the survey, while the total
body weight is a mean for each entire body in the survey. Thus, a discrepancy will exist due to
the differences between individuals. Since the model, man is an approximation, and the discrepancy
is not great, the error may be accepted within the accuracy of this investigation.
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TABLE I

PROPERTIES OF MODEL MAN

SEGMENT HEAD TORSO ARM LEG

Percent of Total wt. 7.9 56.5 4.8 15.7

Weight (ib) 12.92 92.38 7.85 25.67

Mass (Slugs) 0. 402 2. 865 0. 244 0. 798

Length (ft) 1.042 2.000 2.040 2.750

Length2 (Wt) 1.085 4.000 4.160 7.560

Radius (ft) 0.246 0.475 0.133 0.208

Radius 2 (ft2 ) 0.061 0.226 0.018 0.043

IC (slug-ft 2) 0.012 0.324 0.002 0.017

10 (slug-ft2 ) 0.043 1.118 0.086 0.512

11.42 C 2

5.// r.j

Z5~7"

lecimr2

I =I 'c +mD

33

LD

r. 
74

WEIGHT OF HEAD - 12.92 LB-
WEIGHT OF TORSO = 92.38 LB.
WEIGHT OF EACH ARM= 7.85 LB. 12 0 me
WEIGHT OF EACH LEG= 25.67 LB.
TOTAL BODY LENGTH= 69.5 IN.

Figure 1'7A. Model Man in Detail Figure 17B. Axis Definitions of moment
of Inertia of Cylindrical Segments
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Another reason for error is that the following calculations are based upon a rigid figure; and
moments of inertia for various positions will differ from expected values based upon a flexible man.
Hence, the resulting accuracy is not representative of an actual case. However, when the moments
of inertia for a flexible man in various positions are determined, the equation for net angular dis-
placement (appendix I, equation 6) will still hold.

Since the model man is now defined, we may begin to evaluate a movement. The movement to
be evaluated is Z. 1 the cat reflex maneuver. To repeat, this movement involves spreading the
legs, twisting at the waist, closing the legs, spreading the arms, and returning to an untwisted
attitude. The formula describing the net angular change of one cycle of the motion is derived in
appendix I and is repeated here: 'I:

III + lu" i 11+ iuý (6)

Assuming the total amount of the upper part of the body that can be twisted with respect to the
lower part ( 0 ) is 90*, the only unknowns remaining are the moments of inertia. These are now
calculated by using the equations for the moment of inertia of a right circular cylinder about a
principal axis through the center of mass, and by applying the parallel-axis and inclined-axis trans-
fer theorems (appendix I).

For condition 1, illustrated in figure 18 (arms down, legs spread), moments of inertia are
taken about the Z-axis

Iui = 0.521 slug-ft2

Solving for 1l using the inclined axis transfer theorem:

III =-2(l'ztz)2 Izz + 2(l'z'x)2 Ixx + 2(1 z y, 2 Iyy + 2mD2

The direction cosine l'z'z is the cosine of the angle that the rotated (Z') axis makes with the
original (Z) axis. The direction cosine l'z' is the cosine of the angle that the Z'-axis makes withI zx

the X-axis. The direction cosine l'z'y is the cosine of the angle that the Z-'axis makes with
Y-axis.

rzIz = cos 300
2

I''x = cos 90 =0

l'zly = Cos 600 =

III = 1.038 slug-ft 2

For condition 2, illustrated in figure 18, (arms extended to the sides)

Iu2 = 1. 600 slug-ft
2

And since the legs return to their normal position

112 = 0. 117 slug-ft2

Now that the moments of inertia are known for each condition, we can proceed to determine
the net angular displacement.
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CONDITION I

N, N-11 REFERENCE LINE
-.- 0957' LAL 'F 1 I- FLP.LOI

REFERENCE LINE

CONDITION 2

REFERENCE LINE

Figure 18. Axis Definitions of Moment of Inertia of Cylindrical Segments

25



AMRL-TDR-62-129

[ I11 11I

S= fLI1 + I+ ju (appendix I, equation 6)

and, assuming f = 90 (angle of twist of upper portion relative to lower portion).

b 900 1.038 0.117 1
"11.038 + 0.521 - 0.117 + 1.600

A- 540

Thus, after one cycle of twisting the upper part of the body 90 degrees and then untwisting to
the original body position, the body as a whole will have rotated 54 degrees about the Z-axis. If
the moment of inertia of the lower body were to approach infinity for condition 1, and if the moment
of inertia of the upper body were to approach infinity for condition 2, the maximum angular dis-
placement would equal 90 degrees, the initial angle of twist.

This example is presented to show the procedure for evaluating any physical movement. Thus,
each of these or any similar movements can be categorized and listed as to their ease of operation
and practical application. What remains to be done is the experimental determination of moments
of inertia for man in various positions, and the analysis of each movement as to the resulting
angular displacement and possible side effects due to assymetry. Finally, the movements should
be validated experimentally to find a correlation between the mathematical analysis and the practical
applicability. These experiments could be performed during zero-G flights.

In equation 6, the angle of twist ( 6 ) is an independent variable. Ninety degrees was chosen
as the angle, since it is not only easily recognizable, but also seemed close to the maximum for
a man. If the desired angular rotation is less than 54 degrees, all that is necessary is to reduce
the angle of twist proportionately. If the desired angle of twist is greater than 54 degrees, more
than one cycle of the maneuver could easily be performed.

The angle of spread of the legs and arms can also be regulated and will affect the total rotation.
The easiest methods of performing the maneuver can only come from practice; and each individual
may have a different performance technique that should approach the most efficient methods.

DISCUSSION

The nine self-rotation maneuvers in this report may provide a starting point for deriving and
classifying the most efficient procedures for becoming rotationally self-sufficient in a frictionless
environment. Since man can readily acclimate to new environments, the astronaut should become
more at ease in space with each successive venture. Since a stable attitude of the body is necessary
for virtually all operations in outer space, some form of self-rotation training will be a necessity
for all astronauts. This training could be supplemented by actual classes in self-rotation aboard
zero-G aircraft.
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These nine maneuvers and any forthcoming maneuvers could readily be validated aboard such
an aircraft. However, there will be problems in performing a validation of this type, such as the
period of weightlessness, random accelerations of the aircraft, recording data, workspace limita-
tions, and such factors as airsickness and random tumbling (ref. 4). The short period of weightless-
ness may be partially compensated for by the repetition of the weightlessness maneuver. Uneven
accelerations of the aircraft may be tracked by an additional free-floating mass. Recording of data
will certainly be aided by the installation of a telemetry system that will record and transmit
accelerations directly from the free-floating subject within the aircraft. Workspace limitations
may be partially alleviated with the use of a drop-table to suspend the subject in mid-air.

Problems associated with the development of an insulated and pressurized space suit that
will allow freedom of movement will have to be overcome; other problems may be uncovered as
the tests progress.

Inflight validation of these maneuvers will also be helpful in other areas. The motion of a
tethered man will be more stable if he is able to react to undesirable rotations and control them.
Knowledge of the maneuvers would improve both the man's confidence and performance. Although
self-maneuvering units such as gas-expulsion stabilization belts and gyro-augmented stabilization
units will be developed, there will always be a requirement for knowledge about self-rotation, if
only as a provision against mechanical failure.

For a proper study of any self-rotation maneuver, the moments of inertia for flexible man
must be determined. A computer study is planned in this area by Anthropology Section, Behavioral
Sciences Laboratory. The experimental determination of moments of inertia for various body
positions could easily be carried out using turntables mounted on spiral springs from which the
period of oscillation could be measured and hence the moment of inertia could be easily calculated
for each posture. Another method of measuring the period of oscillation is through the use of
equipment based on the principle of the pendulum. Moments of inertia experimentally determined
and compared with the computer study will be a time-saving aid to the analysis of any self-rotation
maneuver.

The model man was constructed of six cylinders placed in such a manner that the shape and
mass of man may be reasonably approximated. It is, however, only an approximation. Therefore,
values calculated for the angular displacement in each maneuver, when compared to the true dis-
placement for a man, are only approximate. Yet, since the model is based on measurements of
human subjects, the order of magnitude of moments of inertia for the model will be comparable to
that for a man. When moment of inertia data for flexible man is taken, a more sophisticated model,
one that better approximates a human being, may be developed. When this is accomplished, a
technique may be developed to rapidly evaluate any self-rotation movement. Numerous variations
of each maneuver described are possible. An evaluation of each variation would be desirable to
classify and optimize them and, in the process, perhaps discover new motions.

In keeping with this classification, we may state 10 general rules governing the art of self-
rotation:

1. Any self-rotation maneuver must contain a change of limb or torso attitude accompanied
by a corresponding change of moment of inertia.

2. The change of limb or torso attitude must result from some form of twisting or continuous
rotary motion of the limbs or torso.

3. The change of moment of inertia must result from the extension of limbs, or the extension
of masses from the limbs.
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4. The twisting motion must contain a four part cycle: an initial state, a twist about the axis
of intended rotation, a change of moment of inertia, and a return to the initial state.

5. Any form of twisting or continuous rotary motion consists of a single cycle of inertia
change of one part of the body with respect to the remainder of the body.

6. In general, assymmetric rotations are difficult to perform, create side effects, are
unstable, and undesirable.

7. In general, symmetric rotations are easy to perform, free from side effects, stable,
and desirable.

8. Rotations about stable axes are stable rotations.

9. The most rotationally stable axis for man is the axis that passes from head to foot and
through the center of mass of the body.

10. Although testing any self-rotation maneuver is more readily performed on a frictionless
platform than in a zero-G aircraft, the process is less efficient, because of a center of mass
misalignment from the axis of rotation, and a lack of coupling (due to restrictions on the freedom
of the subject).

In summary, a man in a weightless environment with no external forces, can, by means of
body-limb manipulation, change his body orientation by rotation. At no time, however, does the
center of mass of the body as a whole move through space. The man may change the relative
angular momentum of various portions of his body through limb manipulation, but the total angular
momentum is constant. For example, if the body had some initial angular velocity, he could
rotate his arms and thus change the angular velocity of his body. When he stopped rotating his
arms, however, the entire body would assume the initial angular velocity.

Any body maneuver may be analyzed by the laws of mechanics. And, following the laws of
mechanics, the nine self-rotation maneuvers should be validated, expanded, and classified for the
use of all space personnel.

Since the state of zero gravity is so prominent in space travel, and since these self-rotation
techniques have been developed for use during space travel, proficiency in self-rotation may con-
ceivably serve as a criterion for crew selection. Today's astronauts experience zero gravity for
prolonged periods. While it is true that the astronauts have been strapped to their seats to restrict
their motion in the workspace area, eventually they will have freedom of motion throughout the
space vehicle, and unless they have some form of artificial gravity or adhesive devices on their
feet to keep their position fixed, they will have to know self-rotation well enough to do their work.
Material handling under zero gravity is another area that could serve as a criterion for crew
selection, for there must be safeguards against mechanical failure even if it means making repairs
by hand. Knowledge of self-rotation is also required in this area.
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SAnother related area is that of self-locomotion. Man cannot translate when placed in a
weightless condition; but if he has a surface from which he can push, he can translate to a new
position in space. This type of motion is called soaring and the path traveled is called a trajectory.
Proficiency in self-locomotion may also be a criterion for crew selection, for the ability to self-
locomote should be a requirement, if only as a safety factor.

These three criteria: self-rotation, material handling, and self-locomotion can all be tested
aboard zero-G aircraft and in fact may become a necessary part of an astronaut's training

These self-rotation maneuvers have been designed so they are best performed when maximum
freedom of movement is available. Yet, it is true that in a space environment an insulated and pres-
surized space suit is absolutely essential. The suits already in existence, however, limit flexibility,
so much that an individual cannot bend over while wearing one. Two solutions to this problem are
immediately obvious. Either the suits must be modified to allow normal flexibility, or the move-
ments must be modified to be effective with limited mobility. We cannot expect the first of these
solutions to be available in the near future although it must continue to be a goal. Therefore, we
are left with only one choice, that is, to modify the movements to give maximum rotation with
present limitations on mobility. The movements dealing primarily with arm rotations should prove
to be the easiest to perform, although the efficiency of the rotation will be greatly decreased.
Movements dealing with bending at the waist would probably be energy consuming and inefficient.
Finally, movements having a 4-stage cycle would not be desirable, since they have more motions
than do continuous rotary maneuvers, thus are more difficult to perform. However, the maneuvers,
classified according to their ease of application with limitations on maneuverability, should be an
integral part of the inflight validation.
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APPENDIX I

DERIVATION OF FORMULAS

LIST OF SYMBOLS

t = time (sec)

m = mass (slugs)

F = force (lb)

L = length of cylinder (ft)

S = length of side of cube (ft)

D = perpendicular distance from reference axis to axis of rotation (ft)

r = radius to outer fiber (ft)

a = linear acceleration (ft/sec')

0 = angular displacement (radians)

w = angular velocity (radians/sec)

a = angular acceleration (radians/sec2 )

B = angle of twist (radians or degrees)

S= angular displacement after maneuver (radians or degrees)

T = torque (lb-ft)

P = linear momentum (slug-ft/sec)

H = angular momentum (lb-ft-sec)

I = moment of inertia (lb-ft-sec2 )

1 = direction cosine

V = volume (cu. ft)

= mass density (slugs/cu. ft)
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SUBSCRIPTS

u = upper portion of body (includes torso, arms, head)

1 = lower portion of body (legs)

H = head

A = arm

T = torso

L = leg

C = about centroidal axis

O = about transverse axis

Z = about Z-axis

Y = about Y-axis

X = about X-axis

Z' = about rotated Z-axis

Y' = about rotated X-axis

N = any axis

1 = initial state

2 = changed state

BASIC EQUATIONS USED

(a) F = ma

T = Ia

(b) H =Ic

(c) Ce dt

dt
d2A

a =

(d) Ic = 9 mr 2  (for a right circular cylinder about its axis of symmetry)

(e) Io = 1/12m (3r 2 + L2 ) (for a right circular cylinder about its transverse axis)

Mf) in = Ic + mD2 (parallel-axis theorem)
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DERIVATION OF EQUATIONS

a. A torque on the upper body is reacted to by a torque on the lower body

1. Tu = uau T1 = 11 •al

2. d2 o

3. T= I d2

dt
2

4. Iu u = fTdtdt where Iu andl1

I1 -r T dt dt remain constant

5. Iu eu =-I01

6 . eu = 16. - (Equation 1)
el lu

Equation 1 may also be derived from the rotational analog of the conservation of momentum. This
equation will not hold if the moments of inertia change as the angular displacements change
according to some function of time. If the moments of inertia are not a function of time, as in the
cat reflex maneuver, the equation is correct.

b. If a man performed some movement, then changed his moment of inertia, and performed
the same movement in reverse, the result would be a net displacement of the man.

1. u - II
e0, Iu'
61, u

0u2 - IlI (Equation 2)

2. The angle 0 is defined to be

=0u" -1 =0u2 - (Equation 3)

3. From equation 1 and 2

I6
_3ul

33



AMRL-TDR-62-129

4. Substituting into equation 3,

Iul u u lu,
U 8u2 + I- eU 2

ul I + 61= OU2 1 +

5. Multiplying by IL, II2,

01 112 ('II + Iul) = 8u2 Ill (112 + Iu2)

6. The net change of attitude is

A = 8 u - U2 = 8i - 812

7. Solving for 8 u2 from step 5, and substituting,

=eu -eu [I'12 ][ "i' + uil (Equation 4)

Lii 12l + 'U2

8. Substituting equation 3 in equation 1, and rearranging,

[Oi = - u (Equation 5)

9. Substituting equation 5 into equation 4, gives

A 1+u 1 112+ iUZ1  (Equation 6)

c. Finding the moment of inertia of a rectangular parallelepiped about its principal axes
(figure 14).

1. I = fr 2 dm

2. Suppose the sides whose lengths are a, b, and c are
parallel to the x, y, and z axes, respectively; and
the moment of inertia about the Z-axis is desired.

3. The term r 2 then is changed to x2 
+ y 2 in rectangular

coordinates. The mass dm can be written as the
product of the mass density (p) times the differential
volume (dV)

r2 =x2 + y2

dm= P dV = p dxdydz
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c b a
2 2 2

4. Izz = p x2 + y2 ) dxdy dz

z c b a
2 2 2

(assuming that p remains constant)

5. 1z = p55 5x 2 dxdydz + p Yf fy 2 dx dy dz

3

6. Izz = pff2dydz + pffay 2 dydz

a 3  b3

7. Izz = p j-b dz + pY a 12 dz

aObc ab 3 c
8. Izz = P1 + 0 12

9. Izz = pabc a 1 2b

10. But p abc = m

11. Izz = (a2  + b 2 ) (Equation 7)m- 12

12. In the same manner, it may be shown that

=eM 12 + C) ,where r = z2 + x1Iyy- 12

Ixx = m(b2 + c') where r2 = y2 + Z2
12

13. Foracube, a = b = c = S

m(S+S2+
I.x = yy = Izz - 12

mcube - (Equation 8)

This may also be proved by a similar integration as shown above.

d. Inclined axis transfer theorem, applied to finding the moment of inertia of a cube about
an axis rotated 450 from a principal axis:

1. If X' is rotated 450 from the X-axis, in the XZ plane, the direction cosines for a cube
are s

lxx /2S 2  2

lyx, 2
1rzx = 0, and

MS2

Izz = Iyy = Ixx 6
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2. The inclined axis theorem states (ref. 3):

Ix'x' = (l'x'x)2 IXX + (Ix'y)2 1yy + (I'x'z)2 Izz (Equation 9)

3. Therefore, for a cube with the axes rotated 450 in one plane

ixS 2 ý mS2
Ix['= 6 + 6-6 2  6 + 0

mS
2

Ixx - 6

4. If the principal axes were rotated such that each
axis was a diagonal of the cube, all the direction
cosines would be

S 43
1 • = S - (see figure 16)

and the moment of inertia about each of these axes
would be

I-6 + 19 +

+mS•
2  ~ S

I - s6 (Equation 10)

which is as expected since the moment of inertia about each principal axis is constant, and since
we know from analytic geometry that the sum of the squares of the direction cosines is equal to
1. This moment of inertia may be shown to be the maximum for a cube.

e. Diameter of each cylinder is calculated as follows:

1. The specific weight of the model is equal to the
specific gravity of the model multiplied by the
specific weight of water.

W = (1.04) (62.5) = 65 lb/cu.ft

2. The volume of a particular part is equal to the weight
of that part, divided by the specific weight

SEGMENT WEIGHT
W
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3. The volume of a particular part is also equal to the
area of the base times the length of the cylinder

ir d2 LV- 4

4. Solving for the diameter, d

d VL 273 V (Equation 11)

DETERMINATION OF THE MODEL MAN

All data for the construction of the model is as follows. From Dempster (ref. 2, p. 27) the
leg length is equal to the crotch height of the median study sample. The arm length is the sum of
the shoulder-elbow length and the forearm-hand length of the median study sample (ref. 2, p. 30).
The torso length is the difference between acromion height standing and the crotch height of the
median study sample (ref. 2, p. 27). The head length is the difference between total stature and
acromion height of the median study sample.

The following weight distribution is contained in Dempster (ref. 2, pp. 186-188) and is based
upon the mean of eight cadavers. The head is 7. 9 percent of total body weight. The torso is 56. 5
percent of total body weight. Each leg is 15. 7 percent of total body weight. Similarly, each arm
is 4. 8 percent of total body weight.

The total body weight is 163. 5 lb., the mean for all subjects in the 1950 USAF survey (ref. 5).
Similarly, the total body height is 5 ft., 9 1/2 inches; and from Dempster (ref. 2, p. 195), specific
gravity is 1.04 as calculated from mass data on cadaver parts and volume data derived by
immersion in water.

If the total body weight and each segment's percent of total body weight are both known, then
by multiplying the two, each segment's weight is known. Since specific gravity is a ratio of specific
weight to the specific weight of water, the specific weight of the model can be determined readily.

The volume of any segment is determined from the above data by dividing the weight of that
segment by its specific weight. This volume is then equated to the mathematical expression for the
volume of a cylinder, V = d2 L , and since the diameter (d) is the sole unknown, it is readily
calculated. 4

In spacing the segments, symmetry was stressed. The head was placed on the torso such
that their axes of symmetry coincide. The arms were placed at equal distances from this axis and
are flush along the torso. The legs were placed such that there was as much separation between
legs as there was between the outer surface of the leg and the outer surface of the torso. Relevant
dimensions and weights are located in figure 17.
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APPENDIX II

THE EFFECT OF ADDITIONAL MASS ON SELF-ROTATION

It has been shown that the effectiveness with which one can self-rotate depends primarily
upon body-limb positioning to give a select moment of inertia ratio. One would expect that by
attaching external masses to the limbs, this moment of inertia ratio can be increased for each
position and.therefore. the ease and amount of rotation can be increased for each maneuver. In this
section, the degree of rotation is examined for the "cat reflex" maneuver after a mass (m) has
been added to the legs or arms of the model man. For simplicity, the masses are chosen to have
an identical shape, and an identical but unknown mass (m). The mass is represented by a letter, in
order that the effects on rotation may easily be determined for a range of masses. The shape of
the mass is spherical, the radius being six inches. The moment of inertia through its center of
mass is then

2 2 m
is- -mr -ým(. 5) 10-

5s 5 •m2= (.) - 10 slug-ft2

For condition 1 (arms down, legs spread), moments of inertia are taken about the Z-axis.

Iul = 0.521 + 2Is + 2mD2

Iul = 0.521 + 0.942m slug-ft2

and solving for Il:
Ill = 1.038 + 2Is + 2mD 2

II, = 1.038 + 6. 922m slug-ft2

For condition 2 (arms extended, legs in)

Iu2 = 1.600 + 2Is + 2mD2

Iu 2 = 1. 600 + 19.402 m slug-ft2

and, solving for 112

112 = 0.117 + 2 1 s + 2mrD 2

11, = 0. 117 + 0. 304 m slug-ft2

Using these moments of inertia, we now find the angular displacement for any mass having the
same spherical shape that may be added for this same maneuver.

6 I 1  II ] (Equation 6)S= B 11 + ul- 12 + Iu2

Once again assuming 0 = 900

= 9Q0F1.038 + 6.922m, 0.117 + 0.304m1
L1.559 + 7.864m 1.717 + 19.710m]
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It .Ls iecalled that for a mass of zero slugs, Z = 540
and, for a mass of 0. 1 slug, 6 = 62.7*,

for a mass of 0. 2 slug, L = 66. 80,
for a mass of 0.3 slug, L = 69. 10,
for a mass of 0. 5 slug, 6 = 71. 50, and
for a mass of 1.0 slug, L = 74.40

It is interesting to note that the addition of a one slug mass (weighing 32. 2 lb. at one g) to
each limb will only increase the angle of rotation 20.4 degrees. Two consecutive cycles of the
same maneuver without masses would probably be easier to perform than a single cycle with
masses. As masses are added, the force necessary to impart momentum to the limbs increases;
and with large masses such as one slug this force would be appreciable. Therefore, the addition of
mass would be impractical, unless the mass was "useful mass, " and it would not effectively
enhance rotation for this maneuver.

It remains to be seen, however, whether adding masses would be desirable for other maneu-
vers. It seems likely that maneuvers involving continuous rotations of the arms or legs would be
advanced by the addition of masses. While it is true that this condition would demand extra force to
begin the motion, rotation of the arms or legs would be easier to maintain, since the greater
momentum of the limb tends to keep the arm rotating much in the manner of the flywheel of an
automobile. It is also true that extra force would be required to stop the motion. Experimental
validation should reveal whether the ease of rotation during the middle of each maneuver gives an
advantage over the extra force required at the beginning and end of each maneuver.

For motions having a four component cycle, the addition of mass to the limbs would probably
be undesirable, since the motion is oscillatory rather than rotary, and therefore more stops and
starts are required.

Although a physical analysis could be made for each maneuver, the inflight validation with
added masses would be a better approach for three reasons. First, a physical analysis would be
only as accurate as the model that it is based upon. Second, such an analysis would be based upon
the laws of rigid body dynamics, but a rotating human subject does not even approach the case of a
rigid body. Third, the results of such an analysis would not merit the complexities such as variable
moment of inertia, locations of the limbs in space, the velocity of rotating segment, the net angle
of rotation, side effects due to coupling about axes other than the axis of rotation, effect of mass
shapes and sizes on the limbs or on combinations of the limbs, time of rotation, etc. An inflight
validation of each maneuver will provide data on many of these variables which could possibly be
shown in the form of charts that may eventually be used to readily analyze the motion under select
conditions.

It should be noted that in both the quantitative evaluation and in the evaluation with added
masses, calculations were made with the legs separated by sixty degrees and the arms perpendic-
ular to the torso. However, any angle of separation of the arms or legs in the proper sequence will
lead to a rotation. Even if the legs are not split in either condition, the model man can rotate nearly
10. 5 degrees of the rest of the maneuver is performed as previously stated. In this case, the addi-
tion of one slug masses to the arms decreases the angle of rotation to only 6. 2 degrees; but if one
slug masses are also added to the legs, the angle of rotation increases to 18. 8 degrees; and if the
masses are taken off of the arms, the angle of rotation would increase to 21.4 degrees. Since these
are only some of the quantities that may be varied for this maneuver alone, the need for optimiza-
tion of each maneuver should be clear.

The inflight validation should also show how accurate our model man is. Once an accurate
model of flexible man is constructed, the theoretical aspects of the study may be furthered. In the
meantime, the best way of studying these maneuvers is to consider the effects of each variable in an
actual zero gravity condition. The calculations presented in this report may be classified only as
general results, and whether or not additional mass will desirably affect body rotation could also
be a part of inflight validation.
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